Advertisements
Advertisements
प्रश्न
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
उत्तर
(y + 5) (y – 3) = (y × y) + (y × −3) + (5 × y) + (5 × −3)
= y2 + (−3y) + (5y) − 15
= y2 − 3y + 5y − 15
= y2 + 2y − 15
APPEARS IN
संबंधित प्रश्न
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Expand the following:
(–x + 2y – 3z)2