Advertisements
Advertisements
प्रश्न
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
विकल्प
0
1
-1
3
उत्तर
We have to find `a^2/(bc)+ b^2 /(ca) +c^2 /(ab)`
Given a + b + c = 0
Using identity `a^3 +b^3 +c^3 -3abc = (a+b+c)(a^2 +b^2 +c^2 -ab -bc -ca)`
`a^3 +b^3 +c^3 -3abc = 0 (a^2 +b^2 +c^2 -ab -bc -ca)`
`a^3 +b^3 +c^3 - 3abc = 0 `
`a^3 +b^3 + c^3 = 3abc`
`a^3 /(abc)+ b^3/(abc) +c^3 /(abc ) = 3`
`((a xx a xx a)/(a xx b xx c))+ ((b xx b xx b)/(a xx b xx c))+((c xx c xx c)/(a xx b xx c)) = 3 `
`a^2 /(abc)+ b^2/(abc) +c^2 /(abc ) = 3`
Hence the value of `a^2 /(bc)+ b^2/(ac) +c^2 /(ab ) = 3`.
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify of the following:
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of 2a + b.
If a - b = 7 and ab = 18; find a + b.
Use the direct method to evaluate :
(2+a) (2−a)
Evaluate: (9 − y) (7 + y)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Evaluate the following without multiplying:
(95)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Expand the following:
(4a – b + 2c)2