Advertisements
Advertisements
प्रश्न
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
उत्तर
In the given problem, we have to find Product of equations
Given (4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
We shall use the identity
`x^3 + y^3 + z^3 - 3xyz = (x+ y +z)(x^2 + y^2 + z^2 - xy - yz - zx)`
` = (4x)^3 + (3y)^3 + (2z)^3 -3 (4x)(3y)(2z)`
` = (4x) xx (4x) xx (4x) +(-3y) xx (-3y) xx (-3y) + (2z) xx (2z) xx (2z) -3 (4x) (-3y)(2z)`
` = 64x^3 - 27y^3 + 8z^3 + 72 xyz`
Hence the product of (4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx) is `64x^2 - 27y^3 + 8z^3 + 72xyz`
APPEARS IN
संबंधित प्रश्न
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form: `(x + 2y + 4z)^2`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b = 6 and ab = 20, find the value of a3 − b3
Evaluate:
253 − 753 + 503
Evaluate:
483 − 303 − 183
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If a2 + b2 + c2 − ab − bc − ca =0, then
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Expand the following:
(x - 3y - 2z)2
Simplify by using formula :
(a + b - c) (a - b + c)
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Simplify (2x – 5y)3 – (2x + 5y)3.