Advertisements
Advertisements
प्रश्न
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
उत्तर
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
= x(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx) + 2y(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
= x3 + 4xy2 + 9xz2 - 2x2y - 6xyz - 3zx2 + 2x2y + 8y3 + 18yz2 - 4xy2 - 122z - 6xyz + 3x2z + 12y2z + 27z3 - 6xyz - 18yz2 - 9xz2
= x3 + 8y3 + 27z3 - 18xyz.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Expand the following:
(x - 3y - 2z)2
If p + q = 8 and p - q = 4, find:
pq
Simplify:
(7a +5b)2 - (7a - 5b)2
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`