Advertisements
Advertisements
प्रश्न
Write in the expanded form: `(x + 2y + 4z)^2`
उत्तर
`(x + 2y + 4z)^2 = x^2 + (2y)^2 + (4z)^2 + 2x(2y) + 2(2y)(4z) + 2x(4z)`
`= x^2 + 4y^2 + 16z^2 + 4xy + 16yz + 4xz`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Write the following cube in expanded form:
(2a – 3b)3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Find the square of : 3a - 4b
Simplify by using formula :
(a + b - c) (a - b + c)
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`