Advertisements
Advertisements
प्रश्न
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
विकल्प
5
10
15
none of these
उत्तर
In the given problem, we have to find the value of `x + 1/x`
Given `x^3 + 1/x^3 = 110`
We shall use the identity `(a + b)^3 = a^3 + b^3 + 3ab (a+b)`
`(x+1/x)^3 = x^3 + 1/x^3 + 3 xx x xx 1/x(x+ 1/x)`
`(x+1/x)^3 = x^3 + 1/x^3 + 3 (x+ 1/x)`
Put `x + 1/x = y`we get,
`(y)^3 = x^3 + 1/x^3 + 3 (y)`
Substitute y = 5 in the above equation we get
`(5)^3 = x^3 + 1/x^3 + 3(5)`
`125 = x^3 + 1/x^3 + 15`
`125 - 15 = x^3 + 1/x^3`
`110 = x^3 + 1/x^3`
The Equation `(y)^3 = x^3 + 1/x^3 + 3(y)` satisfy the condition that `x^3 + 1/x^3 = 110`
Hence the value of `x+ 1/x` is 5.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(998)3
Evaluate the following using identities:
117 x 83
Write in the expanded form:
(2a - 3b - c)2
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If a − b = 4 and ab = 21, find the value of a3 −b3
Evaluate:
483 − 303 − 183
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evalute : `( 7/8x + 4/5y)^2`
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Expand the following:
(3a – 5b – c)2
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4