Advertisements
Advertisements
प्रश्न
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
विकल्प
1
–1
0
`1/2`
उत्तर
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is 0.
Explanation:
Consider the equation:
`x/y + y/x = -1`
Simplify the above expression as follows:
`(x^2 + y^2)/(xy) = -1`
x2 + y2 = –xy
Now, x3 – y3 = (x – y)(x2 + y2 + xy)
= (x – y)(–xy + xy) ...[Substitute: x2 + y2 = –xy]
= (x – y) × 0
= 0
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Evaluate of the following:
(598)3
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If a + b = 6 and ab = 20, find the value of a3 − b3
Evaluate:
253 − 753 + 503
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: (4 − ab) (8 + ab)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If x + y = 1 and xy = -12; find:
x - y
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Using suitable identity, evaluate the following:
1033
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz