Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
उत्तर
In the given problem, we have to find value of `a^3 + b^3 + c^3 - 3abc`
Given `a+b+c = 9, ab + bc + ca = 26`
We shall use the identity
`(a+b+c)^2 = a^2 + b^2 + 2 (ab + bc + ca)`
`(a+b+c)^2 = a^2 + b^2 + c^2 + 2(26)`
`(9)^2 = a^2 + b^2 + c^2 + 52`
`81 - 52 = a^2 b^ + c^2`
`29 = a^2 +b^2 + c^2`
We know that
`a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 +c^2 - ab - bc - ca)`
`a^3 + b^3 + c^3 - 3abc = (a+b+c)[(a^2 + b^2 +c^2) -( ab + bc +ca)]`
Here substituting `a+b + c = 9,ab + bc + ca = 26,a^2 + b^2 + c^2 = 29 ` we get,
`a^3 + b^3 + c^3 - 3abc = 9 [(29 - 26)]`
` = 9 xx 3`
` = 27`
Hence the value of `a^3 + b^3 + c^3 - 3abc` is 27.
APPEARS IN
संबंधित प्रश्न
Factorise:
27x3 + y3 + z3 – 9xyz
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Evaluate the following using identities:
(2x + y) (2x − y)
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use identities to evaluate : (101)2
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate the following without multiplying:
(103)2
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Expand the following:
`(1/x + y/3)^3`