Advertisements
Advertisements
प्रश्न
If a + b = 7 and ab = 12, find the value of a2 + b2
उत्तर
We have to find the value of `a^2 +b^2`
Given `a + b = 7 ,ab = 12`
Using identity `(a+b)^2 = a^2 + 2ab +b^2`
By substituting the value of a + b = 7 ,ab = 12we get
`(a+b)^2 = a^2 +b^2 + 2 xx ab`
`(7)^2 = a^2 +b^2 + 2 xx 12`
`49 = a^2 +b^2 + 24`
By transposing +24 to left hand side we get ,
`49 - 24 = a^2 +b^2`
`25 = a^2 +b^2`
Hence the value of `a^2 +b^2 ` is 25.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(102)3
Evaluate the following using suitable identity:
(998)3
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate the following using identities:
(0.98)2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the following product:
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Expand the following:
(m + 8) (m - 7)
Expand the following:
(x - 5) (x - 4)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Expand the following:
(3a – 2b)3