Advertisements
Advertisements
प्रश्न
Factorise:
27x3 + y3 + z3 – 9xyz
उत्तर
It is known that,
x3 + y3 + z3 − 3xyz = (x + y + z) (x2 + y2 + z2 − xy − yz − zx)
∴ 27x3 + y3 + z3 – 9xyz = (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z)(3x)2 + y2 + z2 – 3xy – yz – 3xz
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3xz)
APPEARS IN
संबंधित प्रश्न
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If a − b = 4 and ab = 21, find the value of a3 −b3
Evaluate of the following:
933 − 1073
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate the following without multiplying:
(103)2
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Using suitable identity, evaluate the following:
101 × 102
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6