Advertisements
Advertisements
प्रश्न
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6
उत्तर
Here, we see that, x – 2y – 6 = 0
∴ x3 + (–2y)3 + (–6)3 = 3x(–2y)(–6) ...[Using identity, a + b + c = 0, then a3 + b3 + c3 = 3abc]
⇒ x3 – 8y3 – 216 = 36xy ...(i)
Now, x3 – 8y3 – 36xy – 216
= x3 – 8y3 – 216 – 36xy
= 36xy – 36xy ...[From equation (i)]
= 0
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write the following cube in expanded form:
`[x-2/3y]^3`
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expanded form: `(x + 2y + 4z)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Expand the following:
(x - 5) (x - 4)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
Factorise the following:
9y2 – 66yz + 121z2
Expand the following:
(3a – 2b)3
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.