Advertisements
Advertisements
प्रश्न
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6
उत्तर
Here, we see that, x – 2y – 6 = 0
∴ x3 + (–2y)3 + (–6)3 = 3x(–2y)(–6) ...[Using identity, a + b + c = 0, then a3 + b3 + c3 = 3abc]
⇒ x3 – 8y3 – 216 = 36xy ...(i)
Now, x3 – 8y3 – 36xy – 216
= x3 – 8y3 – 216 – 36xy
= 36xy – 36xy ...[From equation (i)]
= 0
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Evaluate the following using identities:
`(2x+ 1/x)^2`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form:
(2a - 3b - c)2
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Simplify by using formula :
(5x - 9) (5x + 9)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.