Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
We shall use the identity `(a-b) (a^3 + ab + b^2) = a^3 - b^3`
We can rearrange the `(x/4 - y/3) (x^2/16 + (xy)/12 + y^2/9)`as
` =(x/4 - y/3) ((x/4)^2 + (y/3)^2 + (x/4)(y/3))`
` = (x/4)^3 - (y/3)^3`
\[= \left( \frac{x}{4} \right) \times \left( \frac{x}{4} \right) \times \left( \frac{x}{4} \right) - \left( \frac{y}{3} \right) \times \left( \frac{y}{3} \right) \times \left( \frac{y}{3} \right)\]
\[ = \frac{x^3}{64} - \frac{y^3}{27}\]
Now substituting the value x=3, in `x^3/64 - y^3/27`we get,
`= x^3/64 - y^3/27`
`= (3)^3/64 - (-1)^3/27`
` = 27/64 + 1/27`
Taking Least common multiple, we get
` =(27 xx 27)/(64 xx 27) + (1 xx 64)/(27 xx 64)`
`=729/1728 + 64 /1728`
` =(729 + 64)/1728`
` = 793/1728`
Hence the Product value of `(x/4 - y/3)(x^2/16 + (xy)/12 + y^2/9)`is ` = 793/1728`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
Use identities to evaluate : (101)2
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)