Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
We shall use the identity `(a-b) (a^3 + ab + b^2) = a^3 - b^3`
We can rearrange the `(x/4 - y/3) (x^2/16 + (xy)/12 + y^2/9)`as
` =(x/4 - y/3) ((x/4)^2 + (y/3)^2 + (x/4)(y/3))`
` = (x/4)^3 - (y/3)^3`
\[= \left( \frac{x}{4} \right) \times \left( \frac{x}{4} \right) \times \left( \frac{x}{4} \right) - \left( \frac{y}{3} \right) \times \left( \frac{y}{3} \right) \times \left( \frac{y}{3} \right)\]
\[ = \frac{x^3}{64} - \frac{y^3}{27}\]
Now substituting the value x=3, in `x^3/64 - y^3/27`we get,
`= x^3/64 - y^3/27`
`= (3)^3/64 - (-1)^3/27`
` = 27/64 + 1/27`
Taking Least common multiple, we get
` =(27 xx 27)/(64 xx 27) + (1 xx 64)/(27 xx 64)`
`=729/1728 + 64 /1728`
` =(729 + 64)/1728`
` = 793/1728`
Hence the Product value of `(x/4 - y/3)(x^2/16 + (xy)/12 + y^2/9)`is ` = 793/1728`.
APPEARS IN
संबंधित प्रश्न
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Evaluate the following:
(98)3
Evaluate of the following:
(99)3
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Use identities to evaluate : (502)2
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: (2a + 0.5) (7a − 0.3)
Expand the following:
(m + 8) (m - 7)
Expand the following:
`(2"a" + 1/(2"a"))^2`
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`