Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
We shall use the identity,`a^3 + b^3 = (a+b)(a^2 - ab + b^2)`
We can rearrange the \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\] as
` = (x/7 + y/3)[(x/7)^2 + (y/3)^2 - (x/7)(y/3)]`
` = (x/7)^3 + (y/3)^3`
` = (x/7) xx (x/7) xx (x/7) + (y/3)xx (y/3)xx (y/3)`
` = x^3/343 + y^3/27`
Now substituting the value i`x =3,y = -1`n `x^3/343 + y^3/27`
` = x^3/343 + y^3/27`
`= 3^3/343 + (-1)^3/27`
` = 27/343 - 1/27`
Taking Least common multiple, we get
` = (27 xx 27)/(343 xx 27) - (1 xx 343) / (27 xx 343)`
` = 729/9261 - 343/9261`
`= (729 - 343)/9261`
` = 386/9261`
Hence the Product value of \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]is ` = 386/9261`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Factorise the following:
27y3 + 125z3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Write in the expanded form:
(2a - 3b - c)2
If x = −2 and y = 1, by using an identity find the value of the following
Evaluate:
253 − 753 + 503
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Evaluate: (2 − z) (15 − z)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(a + b - c) (a - b + c)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate the following without multiplying:
(103)2
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`