Advertisements
Advertisements
प्रश्न
If x = −2 and y = 1, by using an identity find the value of the following
उत्तर
In the given problem, we have to find the value of \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\] using identity
Given x = -2
We shall use the identity `(a+b)(a^2 + ab + b^2) = (a^3 - b^3)`
We can rearrange the \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\]as
`(2/x - x/2)(4/x^2 + x^2/4 + 1) = (2/x - x/2)((2/x)^2 +2/x xx x/2+ (x/2)^2)`
` = (2/x)^3 - (x/2)^3`
\[= \left( \frac{2}{x} \right) \times \left( \frac{2}{x} \right) \times \left( \frac{2}{x} \right) - \left( \frac{x}{2} \right) \times \left( \frac{x}{2} \right) \times \left( \frac{x}{2} \right)\]
\[ = \frac{8}{x^3} - \frac{x^3}{8}\]
Now substituting the value x = -2 in `8/x^2 - x^3/8`we get,
` = 8/(-2)^3 - ( -2)^3/8`
` = 8/-8 - -8/8`
` = -1 - (-1)`
` = -1+1`
` = 0`
Hence the Product value of \[\left( \frac{2}{x} - \frac{x}{2} \right) \left( \frac{4}{x^2} + \frac{x^2}{4} + 1 \right)\] is = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
95 × 96
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Write the expanded form:
`(-3x + y + z)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
Evaluate of the following:
(103)3
Evaluate the following:
(98)3
Simplify of the following:
(x+3)3 + (x−3)3
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(m + 8) (m - 7)
Evaluate the following without multiplying:
(95)2
If x + y = 1 and xy = -12; find:
x - y
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)