Advertisements
Advertisements
प्रश्न
If x = −2 and y = 1, by using an identity find the value of the following
उत्तर
Given \[\left( 5y + \frac{15}{y} \right) \left( 25 y^2 - 75 + \frac{225}{y^2} \right)\]
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab + b^2)`,
We can rearrange the \[\left( 5y + \frac{15}{y} \right) \left( 25 y^2 - 75 + \frac{225}{y^2} \right)\]as
` = (5y + 15/y)[(5y)^2 + (15/y)^2 - (5y) (15/y)]`
` = (5y)^3 + (15/y)^3`
` = (5y) xx (5y) xx (5y) + (15/y) xx (15/y) xx (15/y)`
` = 125y^3 + 3375/y^3`
Now substituting the value y = 1in `125y^3 + 3375/y^3`
` = 125y^3 + 3375/y^3`
`= 125(1)^3 + 3375/(1)^3`
`= 125 + 3375`
` = 3500`
Hence the Product value of \[\left( 5y + \frac{15}{y} \right) \left( 25 y^2 - 75 + \frac{225}{y^2} \right)\]is 3500.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
27 – 125a3 – 135a + 225a2
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Factorise the following:
27y3 + 125z3
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a2 + b2 + c2 − ab − bc − ca =0, then
Find the square of : 3a + 7b
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(xy+4) (xy−4)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Expand the following:
(x - 3y - 2z)2
If x + y = 1 and xy = -12; find:
x2 - y2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`