Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
उत्तर
We know that,
`(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
`=> (9)^2 = a^2 + b^2 + c^2 + 2(23)`
`=> 81 = a^2 + b^2 + c^2 + 46` [∵ a + b + c = 9 and (ab + bc + ca = 23)]
`=> a^2 + b^2 + c^2 = 81 - 46`
`=> a^2 + b^2 + c^2 = 35`
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
27y3 + 125z3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Evaluate the following using identities:
`(2x+ 1/x)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
Simplify of the following:
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Use identities to evaluate : (998)2
If a - b = 7 and ab = 18; find a + b.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Evaluate: 20.8 × 19.2
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If m - n = 0.9 and mn = 0.36, find:
m + n
Simplify:
(x + y - z)2 + (x - y + z)2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
(3a – 2b)3