Advertisements
Advertisements
प्रश्न
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
उत्तर
We have to find the value of `a^2/(bc) + b^2/(ca) +c^2/(ab)`
Given `a+b+c = 0`
Using identity `a^3 +b^3 +c^3 - 3abc = (a+b+c) (a^2 +b^2 +c^2 - ab - bc - ca)`
Put `a+b +c = 0`
`a^3 +b^3 +c^3 - 3abc = (0)(a^2 +b^2 +c^2 - ab - bc - ca)`
`a^3 +b^3 + c^3 - 3abc = 0`
`a^3 +b^3 + c^3 = 3abc `
`a^3/(abc) + b^3/(abc) + c^3/(abc) = 3`
`(a xx axx a)/(abc) +(b xx bxx b)/(abc) +(c xx cxx c)/(abc) =3`
`a^2/bc +b^2/ac +c^2 /ab=3`
Hence the value of `a^2/(bc) + b^2/(ac) +c^2/(ab)` is 3.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Expand the following, using suitable identity:
(2x – y + z)2
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Evaluate the following using identities:
(399)2
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write the expanded form:
`(-3x + y + z)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Evaluate of the following:
`(10.4)^3`
If a + b = 8 and ab = 6, find the value of a3 + b3
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Expand the following:
(2p - 3q)2
If a - b = 10 and ab = 11; find a + b.
If x + y = 1 and xy = -12; find:
x2 - y2.
Which one of the following is a polynomial?
Expand the following:
`(4 - 1/(3x))^3`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`