Advertisements
Advertisements
प्रश्न
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
उत्तर
We have to find the value of `a^2/(bc) + b^2/(ca) +c^2/(ab)`
Given `a+b+c = 0`
Using identity `a^3 +b^3 +c^3 - 3abc = (a+b+c) (a^2 +b^2 +c^2 - ab - bc - ca)`
Put `a+b +c = 0`
`a^3 +b^3 +c^3 - 3abc = (0)(a^2 +b^2 +c^2 - ab - bc - ca)`
`a^3 +b^3 + c^3 - 3abc = 0`
`a^3 +b^3 + c^3 = 3abc `
`a^3/(abc) + b^3/(abc) + c^3/(abc) = 3`
`(a xx axx a)/(abc) +(b xx bxx b)/(abc) +(c xx cxx c)/(abc) =3`
`a^2/bc +b^2/ac +c^2 /ab=3`
Hence the value of `a^2/(bc) + b^2/(ac) +c^2/(ab)` is 3.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Evaluate the following using suitable identity:
(102)3
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify (2x + p - c)2 - (2x - p + c)2
Evaluate of the following:
933 − 1073
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Use identities to evaluate : (97)2
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate the following without multiplying:
(999)2
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Factorise the following:
9y2 – 66yz + 121z2
Expand the following:
(–x + 2y – 3z)2