Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
उत्तर
We know that,
`(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)`
`=> (a + b + c)^2 = 16 + 2(10)` [`∵ a^2 + b^2 + c^2 = 16` and ab + bc + ca = 10]
`=> (a + b + c)^2 = 16 + 20`
`=> (a + b + c) = sqrt36`
`=> a + b + c = +-6`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate the following product without multiplying directly:
95 × 96
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Evaluate the following using identities:
(2x + y) (2x − y)
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If a + b = 10 and ab = 21, find the value of a3 + b3
Evaluate of the following:
1113 − 893
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
Evalute : `( 7/8x + 4/5y)^2`
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
`(2"a" + 1/(2"a"))^2`
Evaluate the following without multiplying:
(1005)2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.