Advertisements
Advertisements
प्रश्न
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
उत्तर
Given `(3/x-2/x^2)^3`
We shall use the identity `(a-b^3 ) = a^3-b^3- 3ab(a-b)`
Here `a=3/x,b = 2/x^2`
By applying the identity we get
`(3/x-2/x^2)^3 = (3/x)^3 - (2/x^2)^3 -3 (3/x)(2/x^2)(3/x-2/x^2)`
`= 27/x^3 - 8/x^6 -3 xx3/x xx 2/x^2 (3/x - 2/x^2)`
`= 27/x^3 - 8/x^6 -18/x^3(3/x - 2/x^2)`
`= 27/x^3 - 8/x^6 -(18/x^3 xx3/x) -(18/x^3xx2/x^2)`
`= 27/x^3 - 8/x^6 -(54/x^4 +36/x^5)`
`= 27/x^3 - 8/x^6 -54/x^4 +36/x^5`
Hence cube of the binomial expression of `(3/x-2/x^2)` is `= 27/x^3 - 8/x^6 -54/x^4 +36/x^5`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Write the following cube in expanded form:
(2a – 3b)3
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
(a − b)3 + (b − c)3 + (c − a)3 =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Using suitable identity, evaluate the following:
1033
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.