Advertisements
Advertisements
प्रश्न
Write in the expanded form: (-2x + 3y + 2z)2
उत्तर
(-2x + 3y + 2z)2 = ((-2x) + 3y + 2z)2
`= (-2x)^2 + (3y)^3 + (2z)^2 + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)`
`= 4x^2 + 9y^2 + 4z^2 - 12xy + 12yz - 8xz`
APPEARS IN
संबंधित प्रश्न
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Evaluate of the following:
(9.9)3
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Use identities to evaluate : (101)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Using suitable identity, evaluate the following:
1033
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6