Advertisements
Advertisements
प्रश्न
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
उत्तर १
Consider the given expression :
Let us expand the first term : `[ a/(2b) + (2b)/a]^2`
We know that,
( a + b )2 = a2 + b2 + 2ab
∴ `[ a/(2b) + (2b)/a]^2 = (a/(2b))^2 + ((2b)/a)^2 + 2 xx a/(2b) xx (2b)/a`
= `a^2/(4b)^2 + (4b)^2/a^2 + 2` ...(1)
Let us expand the second term : `[ a/[2b] - [2b]/a]^2`
We know that,
( a - b )2 = a2 + b2 - 2ab
∴ `[ a/(2b) - (2b)/a]^2 = (a/(2b))^2 + ((2b)/a)^2 - 2 xx a/(2b) xx (2b)/a`
= `a^2/(4b)^2 + (4b)^2/a^2 - 2` ...(2)
Thus from (1) and (2), the given expression is
`[ a/(2b) + (2b)/a]^2 - [ a/(2b) - (2b)/a]^2 - 4 `
`= a^2/(4b)^2 + (4b)^2 /a^2 + 2 - a^2/(4b)^2 - (4b)^2/a^2 + 2 - 4`
= 0.
उत्तर २
x2 - y2 = (x - y) (x + y)
So,
`= (a/(2b) + (2b)/a)^2 - (a/(2b) - (2b)/a)^2`
`= [(a/(2b) + (2b)/a) - (a/(2b) - (2b)/a)] [(a/(2b) + (2b)/a)] + (a/ (2b) - (2b)/a)`
`= ((4b)/a) ((2a)/(2b))`
= 4
So,
`(a/(2b)+ (2b)/a)^2 - (a/(2b) - (2b)/a)^2 - 4`
= 4 - 4
= 0
APPEARS IN
संबंधित प्रश्न
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
(99)3
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).