Advertisements
Advertisements
प्रश्न
If x = −2 and y = 1, by using an identity find the value of the following
उत्तर
n the given problem, we have to find the value of (4y2 − 9x2) (16y4 + 36x2y2+81x4) using identity
Given x=-2 y = 1
We shall use the identity `(a-b)(a^2 + ab+b^2) = a^3 - b^3`
We can rearrange the 4y2 − 9x2 (16y4 + 36x2y2+81x4) as
`(4y^2 - 9x^2 ) (16y^4 + 36x^2 + 81x^4) = (4y^2 - 9x^2)((4y^2)^2 + 4y^2 xx 9x^2 + (9x^2)^2)`
`= (4y^2)^3 - (9x^2)^3`
\[= \left( 4 y^2 \right) \times \left( 4 y^2 \right) \times \left( 4 y^2 \right) - \left( 9 x^2 \right) \times \left( 9 x^2 \right) \times \left( 9 x^2 \right)\]
\[ = 64 y^6 - 729 x^6\]
Now substituting the value x = -2 , y =1 in `64y^6 - 729x^6`we get,
`= 64y^6 - 729x^6`
` = 64(1)^6 - 729(-2)^6`
` = 64 - 729(64)`
Taking 64 as common factor in above equation we get,
` = 64 (1-729)`
` = 64 xx -728`
` = -46592`
Hence the Product value of (4y2 − 9x2 )(16y4 + 36x2y2+81x4) is ` = -46592`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Evaluate the following product without multiplying directly:
103 × 107
Write the following cube in expanded form:
`[3/2x+1]^3`
Evaluate following using identities:
991 ☓ 1009
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
1043 + 963
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Evalute : `( 7/8x + 4/5y)^2`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Which one of the following is a polynomial?
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.