Advertisements
Advertisements
प्रश्न
Evaluate of the following:
1043 + 963
उत्तर
In the given problem, we have to find the value of numbers
Given 1043 + 963
We can write 1043 + 963 as `(100 + 4)^3 + (100 - 4)^3`
We shall use the identity `(a+b)^3 + (a-b)^3 = 2 [a^3 + 3ab^2]`
Here a= 100 , b = 4
\[{104}^3 + {96}^3 = \left( 100 + 4 \right)^3 + \left( 100 - 4 \right)^3\]
`= 2 [100^3 + 3 (100)(4)^2]`
` = 2 [1000000 + 300 xx 16]`
` = 2 [1000000 +4800]`
` = 2 [1004800]`
` = 2009600`
Hence the value of `104^3 + 96^3`is 2009600.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(102)3
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form (a2 + b2 + c2 )2
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If a + b = 6 and ab = 20, find the value of a3 − b3
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If x + y = 9, xy = 20
find: x - y
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
Simplify:
(7a +5b)2 - (7a - 5b)2
Which one of the following is a polynomial?