Advertisements
Advertisements
प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
उत्तर
(x - y)3 = x3 - y3 - 3xy(x - y)
Using Identity
`[x - 2/3y]^3 = x^3 - (2/3y)^3 - 3(x)(2/3y)(x - 2/3y)`
= `x^3 - 8/27y^3 - 2xy(x - 2/3y)`
= `x^3 - 8/27y^3 - 2x^2y + 4/3xy^2`
APPEARS IN
संबंधित प्रश्न
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Write in the expanded form:
(2a - 3b - c)2
Write the expanded form:
`(-3x + y + z)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(2+a) (2−a)
Expand the following:
(m + 8) (m - 7)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Simplify (2x – 5y)3 – (2x + 5y)3.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).