Advertisements
Advertisements
प्रश्न
Evaluate:
253 − 753 + 503
उत्तर
In the given problem we have to evaluate the following
Given 253 − 753 + 503
We shall use the identity `a^3 + b^3 +c^3 -3abc = (a+b+c)(a^2 + b^^2 + c^2 - ab - bc - ca)`
Let Take a = 25,b = 75,c = 50
`a^3 + b^3 + c^3 (a+b+c) (a^2+b^2 + c^2 - ab - bc -ca)`
` a^3 + b^3 + c^3 = (a+b+c)(a^2 + b^2 + c^2 -ab - bc-ca) + 3abc`
`a^3 + b^3+ b^3 = (-75 + 25 -50)(a^2 + b^2 + c^2 - ab =bc - ca) + 3abc`
`a^3 + b^3 + c^3 = 0 xx (a^2 + b^2 c^2 - ab - bc - ca) + 3abc`
`a^3+ b^3+c^3 = +3abc`
`25^3 - 75^3+50^3 = 3 xx 25 xx 50 xx -75`
` = -281250`
Hence the value of 253 − 753 + 503 is` -281250`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(x + 8) (x – 10)
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following:
27y3 + 125z3
Factorise the following:
64m3 – 343n3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(99)3
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
Evalute : `( 7/8x + 4/5y)^2`
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate the following without multiplying:
(999)2
Using suitable identity, evaluate the following:
1033