Advertisements
Advertisements
प्रश्न
Evaluate:
253 − 753 + 503
उत्तर
In the given problem we have to evaluate the following
Given 253 − 753 + 503
We shall use the identity `a^3 + b^3 +c^3 -3abc = (a+b+c)(a^2 + b^^2 + c^2 - ab - bc - ca)`
Let Take a = 25,b = 75,c = 50
`a^3 + b^3 + c^3 (a+b+c) (a^2+b^2 + c^2 - ab - bc -ca)`
` a^3 + b^3 + c^3 = (a+b+c)(a^2 + b^2 + c^2 -ab - bc-ca) + 3abc`
`a^3 + b^3+ b^3 = (-75 + 25 -50)(a^2 + b^2 + c^2 - ab =bc - ca) + 3abc`
`a^3 + b^3 + c^3 = 0 xx (a^2 + b^2 c^2 - ab - bc - ca) + 3abc`
`a^3+ b^3+c^3 = +3abc`
`25^3 - 75^3+50^3 = 3 xx 25 xx 50 xx -75`
` = -281250`
Hence the value of 253 − 753 + 503 is` -281250`.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[3/2x+1]^3`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Write in the expanded form:
`(2 + x - 2y)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If a2 + b2 + c2 − ab − bc − ca =0, then
Find the square of : 3a + 7b
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(3x + 4) (2x - 1)
Simplify by using formula :
(a + b - c) (a - b + c)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
Using suitable identity, evaluate the following:
101 × 102
Factorise the following:
4x2 + 20x + 25
Factorise the following:
9y2 – 66yz + 121z2