Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
`(a^2b - b^2a)^2`
उत्तर
In the given problem, we have to evaluate expressions by using identities.
The given expression is `(a^2b - b^2a)^2`
We shall use the identity `(x - y)^2 = x^2- 2xy + y^2`
Here `x = a^2b`
`y = b^2a`
By applying identity we get
`(a^2b - b^2a)^2 = (a^2b)^2 + (b^2a)^2 - 2 xx a^2b xx b^2a`
`= (a^2b xx a^2b) + (b^2a xx b^2a) - 2 xx a^2b xx b^2a`
`= a^4b^2 - 2a^3b^3 + b^4a^2`
Hence the value of `(a^2b - b^2a)^2 "is" a^4b^2 - 2a^3b^3 + b^4a^2`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Expand the following, using suitable identity:
(3a – 7b – c)2
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
1043 + 963
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = −2 and y = 1, by using an identity find the value of the following
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If a − b = −8 and ab = −12, then a3 − b3 =
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y = 9, xy = 20
find: x - y
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Factorise the following:
4x2 + 20x + 25