Advertisements
Advertisements
प्रश्न
If x + y = 9, xy = 20
find: x - y
उत्तर
x + y = 9, xy = 20
We know (a + b)
= a2 + 2ab + b2
∴ (x + y)2
= 81 x2 + y2 + 2xy
⇒ x2 + y2
= 81 - 2(120)
= 41
We also know (a - b)2
= a2 - 2ab + b2
⇒ (x - y)2
= x2 - 2xy + y2
⇒ (x - y)2
= 41 - 2(20)
= 1
⇒ x - y
= ±1.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If a − b = −8 and ab = −12, then a3 − b3 =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If a + b = 7 and ab = 10; find a - b.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`