Advertisements
Advertisements
प्रश्न
If a - b = 10 and ab = 11; find a + b.
उत्तर
a - b = 10, ab = 11
We know that :
(a - b)2 = a2 - 2ab + b2
⇒ (10)2 = a2 + b2 - 2 x 11
⇒ 100 = a2 + b2 - 22
⇒ a2 + b2
= 100 + 22
= 122
Using (a + b)2 = a2 + b2 + 2ab, we get
(a + b)2
= 122 +2(11)
= 122 + 22
= 144
⇒ (a + b)
= `sqrt(144)`
= ±12.
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Expand the following:
(3a – 2b)3