Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
उत्तर
We have,
`[x^2 - x + 1]^2 - [x^2 + x + 1]^2`
`= [(x^2)^2 + (-x)^2 + 1^2 + 2(x^2)(-x) + 2(-x)(1) + 2x^2 (1)] - [(x^2)^2 + (x)^2 + (1)^2 + 2x^2 (x) + 2(x)(1) + 2(x^2)(1)]`
`= x^4 + x^2 + 1 - 2x^3 - 2x + 2x^2 - x^2 - x^4 - 1 - 2x^3 - 2x - 2x^2`
`[∵ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca]`
`= -4x^3 - 4x`
`= -4x [x^2 + 1]`
`∴ [x^2 - x + 1]^2 - [x^2 + x + 1]^2 = -4x[x^2 + 1]`
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Evaluate the following using identities:
`(2x+ 1/x)^2`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a − b = −8 and ab = −12, then a3 − b3 =
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use identities to evaluate : (998)2
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(2a+3) (2a−3)
Use the direct method to evaluate :
(xy+4) (xy−4)
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)