Advertisements
Advertisements
प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
उत्तर
9x2 + 6xy + y2
= (3x)2 + 2(3x)(y) + (y)2
= (3x + y)2 ...[x2 + 2xy + y2 = (x + y)2]
= (3x + y)(3x + y)
APPEARS IN
संबंधित प्रश्न
Write in the expanded form:
(2a - 3b - c)2
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Evaluate of the following:
463+343
Find the following product:
Find the following product:
If a + b = 6 and ab = 20, find the value of a3 − b3
If a − b = −8 and ab = −12, then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use identities to evaluate : (97)2
Use identities to evaluate : (998)2
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify (2x – 5y)3 – (2x + 5y)3.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).