Advertisements
Advertisements
प्रश्न
Write in the expanded form:
(2a - 3b - c)2
उत्तर
We have
`(2a - 3b - c)^2 = [(2a) + (-3b) +(-c)]^2`
`= (2a)^2 + (-3b)^2 + (-c)^2 + 2(2a)(-3b) + 2(-3b)(-c) + 2(2a)(-c)`
`[∵ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc = 2ca]`
`= 4a^2 + 9b^2 + c^2 - 12ab + 6bc - 4ac`
`∴ (2a - 3b - c)^2 = 4a^2 + 9b^2 + c^2 - 12ab + 6bc - 4ca`
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Evaluate of the following:
463+343
Simplify of the following:
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If a + b = 7 and ab = 10; find a - b.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).