Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
उत्तर
Given, a + b + c = 9 and ab + bc + ca = 26 ...(i)
Now, a + b + c = 9
On squaring sides, we get
(a + b + c)2 = (9)2
⇒ a2 + b2 + c2 + 2ab + bc + ca = 81 ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
⇒ a2 + b2 + c2(ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2(26) = 81 ...[From equation (i)]
⇒ a2 + b2 + c2 = 81 – 52 = 29
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate the following using identities:
(0.98)2
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate the following without multiplying:
(999)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.