Advertisements
Advertisements
प्रश्न
उत्तर
Given (0.2)3 − (0.3)3 + (0.1)3
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab -bc-ca)`
Let Take a = 0.2,b=0.3 ,c=0.1
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2+b^2 +c^2 - ab-bc - ca)`
`a^3 + b^3 +c^3 = (a+b+c)(a^2+b^2 +c^2 - ab-bc - ca)+3abc`
\[a^3 + b^3 + c^3 = \left( 0 . 2 - 0 . 3 + 0 . 1 \right)\left( a^2 + b^2 + c^2 - ab - bc - ca \right) + 3abc\]
\[a^3 + b^3 + c^3 = 0 \times \left( a^2 + b^2 + c^2 - ab - bc - ca \right) + 3abc\]
`a^3+b^3+c^3 = +3abc`
`(0.2)^3 - (0.3)^3 + (0.1)^3 = 3 xx 0.2 xx 0.3 xx 0.1`
` = -0.018`
Hence the value of (0.2)3 − (0.3)3 + (0.1)3 is -0.018.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Write in the expanded form (a2 + b2 + c2 )2
Simplify `(a + b + c)^2 + (a - b + c)^2`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
If a + b = 7 and ab = 12, find the value of a2 + b2
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
If a - b = 7 and ab = 18; find a + b.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(2x + 3y) (2x - 3y)
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If x + y = 1 and xy = -12; find:
x - y
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`