Advertisements
Advertisements
प्रश्न
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
उत्तर
Volume of cuboid = (length) × (width) × (height)
We have, 12ky2 + 8ky – 20k
= 4[3ky2 + 2ky – 5k]
= 4[k(3y2 + 2y – 5)]
= 4 × k × (3y2 + 2y – 5)
= 4k[3y2 – 3y + 5y – 5]
= 4k[3y(y – 1) + 5(y – 1)]
= 4k[(3y + 5) × (y – 1)]
= 4k × (3y + 5) × (y – 1)
Thus, the possible dimensions of the cuboid are 4k, (3y + 5) and (y – 1).
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Evaluate the following using identities:
(0.98)2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expand form: `(2x - y + z)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Simplify of the following:
(x+3)3 + (x−3)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Evaluate:
483 − 303 − 183
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Expand the following:
(2p - 3q)2
Evaluate the following without multiplying:
(103)2
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).