Advertisements
Advertisements
प्रश्न
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
उत्तर
Dividing the given equation by a, we get:
`"a"^2/"a" - (7"a")/"a" + 1/"a" = 0, "a" - 7 + 1/"a" = 0`
⇒ `"a" + (1)/"a"` = 7.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
If a − b = 4 and ab = 21, find the value of a3 −b3
Evaluate of the following:
933 − 1073
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use identities to evaluate : (502)2
Evaluate: (9 − y) (7 + y)
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.