हिंदी

Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a). - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that (a + b + c)3 – a3 – b– c3 = 3(a + b)(b + c)(c + a).

योग

उत्तर

To prove: (a + b + c)3 – a3 – b– c3 = 3(a + b)(b + c)(c + a)

L.H.S = [(a + b + c)3 – a3] – (b3 + c3)

= (a + b + c – a)[(a + b + c)2 + a2 + a(a + b + c)] – [(b + c)(b2 + c2 – bc)]  ...[Using identity, a3 + b3 = (a + b)(a2 + b2 – ab) and a3 – b3 = (a – b)(a2 + b2 + ab)]

= (b + c)[a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + a2 + ab + ac] – (b + c)(b2 + c2 – bc)

= (b + c)[b2 + c2 + 3a2 + 3ab + 3ac – b2 – c2 + 3bc]

= (b + c)[3(a2 + ab + ac + bc)]

= 3(b + c)[a(a + b) + c(a + b)]

= 3(b + c)[(a + c)(a + b)]

= 3(a + b)(b + c)(c + a) = R.H.S

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Polynomials - Exercise 2.4 [पृष्ठ २३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 2 Polynomials
Exercise 2.4 | Q 9. | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×