Advertisements
Advertisements
प्रश्न
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).
उत्तर
To prove: (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a)
L.H.S = [(a + b + c)3 – a3] – (b3 + c3)
= (a + b + c – a)[(a + b + c)2 + a2 + a(a + b + c)] – [(b + c)(b2 + c2 – bc)] ...[Using identity, a3 + b3 = (a + b)(a2 + b2 – ab) and a3 – b3 = (a – b)(a2 + b2 + ab)]
= (b + c)[a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + a2 + ab + ac] – (b + c)(b2 + c2 – bc)
= (b + c)[b2 + c2 + 3a2 + 3ab + 3ac – b2 – c2 + 3bc]
= (b + c)[3(a2 + ab + ac + bc)]
= 3(b + c)[a(a + b) + c(a + b)]
= 3(b + c)[(a + c)(a + b)]
= 3(a + b)(b + c)(c + a) = R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Evaluate:
253 − 753 + 503
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use identities to evaluate : (97)2
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(xy+4) (xy−4)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If p + q = 8 and p - q = 4, find:
pq
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Expand the following:
(–x + 2y – 3z)2