Advertisements
Advertisements
प्रश्न
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
उत्तर
`(2x + 1/3)^2 - (x - 1/2)^2 = [(2x + 1/3) - (x - 1/2)][(2x + 1/3) + (x - 1/2)]`
= `(2x - x + 1/3 + 1/2)(2x + x + 1/3 - 1/2)` ...[Using identity, a2 – b2 = (a – b)(a + b)]
= `(x + (2 + 3)/6)(3x + (2 - 3)/6)`
= `(x + 5/6)(3x - 1/6)`
APPEARS IN
संबंधित प्रश्न
Factorise:
27x3 + y3 + z3 – 9xyz
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate following using identities:
991 ☓ 1009
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate the following:
(98)3
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Simplify by using formula :
(2x + 3y) (2x - 3y)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
Expand the following:
(4a – b + 2c)2
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`