Advertisements
Advertisements
प्रश्न
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
उत्तर
We have
`(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
`=[x^2 + y^2 + (-z)^2]^2 - [x^2 + (-y^2) + (z^2)]^2`
`= [(x^2)^2 + (y^2)^2 + (-z^2)^2 + 2(x^2)(y^2) + 2(y^2)(-z^2) + 2(x^2)(-z^2)]`
`-[(x^2)^2 + (-y^2)^2 + (z^2)^2 + 2(x^2)(-y^2) + 2(-y^2)z62 + 2x^2z^2]`
`[∵ (a + b + c)^2 = a^2 + b^2 = c^2 + 2ab + 2bc + 2ca]`
`= x^4 + y^2 + z^4 + 2x^2y^2 - 2z^2x^2 - x^4 - y^4 - z^4 + 2x^2y^2 + 2y^2z^2 - 2z^2x^2`
`= 4x^2y^2 - 4z^2x^2`
`∴ (x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2 = 4x^2y^2 - 4z^2x^2`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Factorise the following:
64m3 – 343n3
Evaluate the following using identities:
(399)2
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Expand the following:
`(2"a" + 1/(2"a"))^2`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Expand the following:
(4a – b + 2c)2