Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
उत्तर
In the given problem, we have to find the value of `x^2 + 1/x^2 , x^3 + 1/x^3 , x^4 +1/x^4`
Given `x+1/x = 3`
We shall use the identity `(x+y)^2 = x^2 +y^2 + 2xy`
Here putting `x+1/x = 3`,
`(x+1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`(3)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
` 9 = x^2 + 1/x^2 + 2`
`9-2 = x^2 + 1/x^2`
` 7 = x^2 + 1/x^2`
Again squaring on both sides we get,
`(x^2 + 1/x^2)^2 = (7)^2`
We shall use the identity `(x+y )^2 = x^2 + y^2+2xy`
`(x^2 + 1/x^2)^2= x^4 + 1/x^4 + 2xx x^2 xx 1/x^2`
`(7)^2 =x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`49 = x^4 + 1/x^4 + 2`
`49 - 2 = x^4 + 1/x^4`
`47 = x^4 + 1/x^4`
Again cubing on both sides we get,
`(x+ 1/x)^3 = (3)^3`
We shall use identity `(a+b)^3 = a^3+ b^3 + 3ab(a+b)`
`(x+1/x)^3 = x^3+ 1/x^3 + 3xx x xx 1/x(x + 1/x)`
`(3)^3 = x^3 + 1/x^3+ 3 xx x xx 1/x xx 3`
`27 = x^3 + 1/x^3 + 9`
`27-9 = x^3 + 1/x^3`
` 18 = x^3 + 1/x^3`
Hence the value of `x^2 + 1/x^2 ,x^3+ 1/x^3, x^4 + 1/x^4`is 7,18,47 respectively.
APPEARS IN
संबंधित प्रश्न
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
`(a^2b - b^2a)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
1043 + 963
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a − b = 5 and ab = 12, find the value of a2 + b2
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: (4 − ab) (8 + ab)
If m - n = 0.9 and mn = 0.36, find:
m + n
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Expand the following:
(3a – 5b – c)2