Advertisements
Advertisements
प्रश्न
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
उत्तर
Given \[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
We shall use the identity `a^3 + b^3 = (a+b) (a^2 = ab + b^2)`,
we can rearrange the `(3 + 5/x)(9 - 15/x + 25/x^2)`as
`= (3+ 5/x) [(3)^2 - (3)(5/x)+ (5/x)^2]`
` = (3)^2 + (5/x)^3`
` = (3) xx (3) xx (3) + (5/x ) xx (5/x)xx (5/x)`
` = 27 + 125/x^3`
Hence the Product value of ` (3+ 5/x)(9- 15/x + 25/x^2)`is ` 27+ 125/x^3`.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(x + 2y + 4z)2
Write the following cube in expanded form:
`[3/2x+1]^3`
Write in the expanded form:
`(a + 2b + c)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use identities to evaluate : (101)2
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Evaluate the following without multiplying:
(999)2
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If x + y = 1 and xy = -12; find:
x - y
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(7a +5b)2 - (7a - 5b)2
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`