Advertisements
Advertisements
प्रश्न
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
उत्तर
Given `3x+2y = 20,xy = 14/9`
On cubing both sides we get,
`(3x+ 2y)^3 = (20)^3`
We shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`27x^3 + 8y^3 + 3(3x)(2y)(3x+2y) = 20 xx 20 xx 20`
`27x^3 + 8y^3 + 18 (xy)(3x+ 2y)= 8000`
`27x^3 + 8y^3 + 18 (14/9)(20) = 8000`
` 27x^3 + 8y^3 = 8000 - 560`
`27x^3 + 8y^3 = 7440`
Hence the value of ` 27x^3 + 8y^3 `is 7440 .
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: (6 − 5xy) (6 + 5xy)
Simplify by using formula :
(5x - 9) (5x + 9)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
Simplify:
(x + y - z)2 + (x - y + z)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Find the following product:
(x2 – 1)(x4 + x2 + 1)