Advertisements
Advertisements
प्रश्न
Write the following cube in expanded form:
(2x + 1)3
उत्तर
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b (2x + 1)3
= (2x)3 + 13 + (3 × 2x × 1)(2x + 1)
= 8x3 + 1 + 6x(2x + 1)
= 8x3 + 12x2 + 6x + 1
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
(598)3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)