Advertisements
Advertisements
प्रश्न
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
उत्तर
`"a" - (1)/"a"` = 3
Squaring both sides, we get
`("a" - 1/"a")^2`
= `"a"^2 + (1)/"a"^2 - 2`
= 9
⇒ `"a"^2 + (1)/"a"^2`
= 11.
Now,
`("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2`
= 11 + 2
= 13
⇒ `"a" + (1)/"a"^2`
= ±`sqrt(13)`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Write in the expanded form: (ab + bc + ca)2
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
Evaluate: (5xy − 7) (7xy + 9)
Find the squares of the following:
(2a + 3b - 4c)
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Using suitable identity, evaluate the following:
101 × 102