Advertisements
Advertisements
प्रश्न
Find the squares of the following:
(2a + 3b - 4c)
उत्तर
Using (a + b + c)2
= a2 + b2 + c2 + 2ab + 2bc + 2ac
(2a +3b - 4c)2
= (2a)2 + (3b)2 + (4c)2 + 2(2a)(3b) + 2(3b)(-4c) + 2(2a)(-4c)
= 4a2 + 9b2 + 16c2 + 12ab - 24bc - 8ac.
APPEARS IN
संबंधित प्रश्न
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Simplify by using formula :
(a + b - c) (a - b + c)
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4