Advertisements
Advertisements
प्रश्न
Find the squares of the following:
(2a + 3b - 4c)
उत्तर
Using (a + b + c)2
= a2 + b2 + c2 + 2ab + 2bc + 2ac
(2a +3b - 4c)2
= (2a)2 + (3b)2 + (4c)2 + 2(2a)(3b) + 2(3b)(-4c) + 2(2a)(-4c)
= 4a2 + 9b2 + 16c2 + 12ab - 24bc - 8ac.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Expand the following, using suitable identity:
(2x – y + z)2
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Simplify by using formula :
(2x + 3y) (2x - 3y)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.