Advertisements
Advertisements
Question
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
Solution
n the given problem, we have to find value of x3 + y3 + z3 −3xyz
Given x + y + z = 8 , xy +yz +zx = 20
We shall use the identity
`(x+y+z)^2 = x^2 + y^2 + z^2 + 2 (xy + yz +za)`
`(x+y+z)^2 = x^2 + y^2 + z^2 +2 (20)`
`64 = x^2 + y^2 +z^2 + 40`
`64 - 40 = x^2 + y^2 + z^2`
`24 = x^2 + y^2 + z^2`
We know that
`x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - yz -zx)`
`x^3 + y^3 + z^3 - 3xyz = (x+y+z)[(x^2 + y^2 + z^2 )- (xy - yz -zx)]`
Here substituting `x+y +z = 8,xy +yz + zx = 20,x^2 +y^2 + z^2 = 24 ` we get
`x^3 + y^3 + z^3 -3xyz = 8 [(24 - 20)] `
` = 8 xx 4`
` =32`
Hence the value of x3 + y3 + z3 −3xyz is 32.
APPEARS IN
RELATED QUESTIONS
Factorise the following:
27y3 + 125z3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expanded form: (ab + bc + ca)2
Simplify (2x + p - c)2 - (2x - p + c)2
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
If x = −2 and y = 1, by using an identity find the value of the following
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (2 − z) (15 − z)
Evaluate: 203 × 197
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.